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Abstract Group contraction plays a relevant rôle in spontaneously broken symmetry the-
ories. Its physical meaning in connection with Bose condensation and the origin of macro-
scopic quantum systems is discussed.
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1 Introduction

The ordered patterns we observe in condensed matter physics and in high energy physics
are created by the quantum dynamics. Many macroscopic systems exhibiting some kind of
ordering, such as crystals, ferromagnets, superconductors, are described by the underlying
quantum dynamics. Even the arrangement of some large scale structures in the Universe, as
well as the ordering in biological systems appear to be the manifestation of the microscopic
dynamics ruling the elementary components of these systems. My aim in this paper is to re-
view, indeed, how the generation of ordered structures is explained in Quantum Field Theory
(QFT) [18, 59, 61, 62, 65]: as we will see, the observed ordered patterns are generated by
the dynamical rearrangement of the symmetry of the underlying dynamics. The mechanism
which is at work, according to well established results of QFT, goes under the general name
of spontaneous breakdown of symmetry and involves the physical phenomena of the Bose
condensation and the mathematical structure of the (Ïnonü–Wigner) group contraction [31,
51, 52, 70, 71].

1.1 The Quantum Field Theory Framework

The systems studied by QFT are systems with infinitely many degrees of freedom and are
described in terms of operator fields. One has the in-field and the out-field state space. Since,
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at the quantum level, observations performed in the interaction region may drastically inter-
fere with the interacting objects thus changing their nature, the only regions accessible to
observations are those where the interaction forces can be safely assumed to not operate,
far away (in space and in time) from the interaction region, i.e. the asymptotic regions (the
in- and out-regions). Besides the asymptotic fields, one then also introduces dynamical or
Heisenberg fields. These are the interacting fields in terms of which the dynamics is given.
Since the interaction region is precluded from observation, Heisenberg fields are not observ-
able. Observables are thus solely described in terms of asymptotic fields (these are called
the quasiparticle fields in many body physics).

Such a situation is described by the Lhemann–Symanzik–Zimmermann (LSZ) formalism
of QFT [10, 32, 59, 60], where the dynamics (the Lagrangian) is described in terms of
the Heisenberg fields. The dynamical map expressing the Heisenberg fields in terms of the
physical fields is known as the Haag expansion and is a weak relation in the sense that it
only holds between expectation values over the physical state space. The set of the physical
fields is supposed to be an irreducible set of fields and it may include bound states fields.
Therefore, in general there is no one-to-one correspondence between Heisenberg fields and
physical fields.

It is important to mention that in some cases the interaction cannot be switched off. Thus
free, i.e. non-interacting, fields cannot be always identified. In this paper, however, I will
consider those cases where one can always safely assume that interaction can be considered
switched off in some asymptotic regions.

Interacting field equations, derived from the Lagrangian describing the evolution of the
system in space-time, are thus the motion equations for the Heisenberg fields. The dynam-
ical equations, however, do not define completely the dynamical problem: one must also
specify the space of the states on which the dynamics has to be realized. Only in that case
the dynamical problem is well defined: indeed, operator fields are mathematically mean-
ingful objects only when the state space on which they operate is given. This has a deep
physical consequence: it means that the possibility exists that the same dynamical equations
for the same set of Heisenberg fields may be realized in different, i.e. physically inequiva-
lent, spaces of states and therefore, depending on the state space one works with, they may
produce different dynamical outputs.

The existence of physically inequivalent state spaces, i.e. of infinitely many unitarily in-
equivalent representations of the canonical (anti-)commutation relations, is allowed in QFT
since there the systems have infinitely many degrees of freedom. In quantum mechanics,
on the contrary, since the number of degrees of freedom is finite, all the representations of
the canonical (anti-)commutation relations are unitarily, and thus physically, equivalent, as
required by the von Neumann theorem [10, 67]. Thus, in QFT, provided mathematical care
is adopted, transitions among physically inequivalent representations describe the system
phase transitions (such as transition from the normal phase to the superconducting phase of
a metal).

1.2 Spontaneous Breakdown of Symmetry

The symmetry properties of the Heisenberg field equations, i.e. the symmetry of the dy-
namics (in this paper I only consider continuous symmetries), may appear “broken” or
rearranged into different symmetry patterns at level of the physical asymptotic fields. For
example, in the case of the ferromagnets the Lagrangian from which the Heisenberg equa-
tions are derived is invariant under the spin rotational SU(2) transformations of the Heisen-
berg field operators. On the other hand, the observable system, which is described in terms
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of quasiparticle (or physical) field operators, is characterized by its non-zero magnetiza-
tion. The appearance of the privileged direction into which the magnetization points and
its non vanishing value signal that the original SU(2) isotropy at the level of the Heisen-
berg fields has been broken at the phenomenological level and the ferromagnetic ordering
has been realized. Order thus appears as a manifestation of the symmetry breakdown, or,
in other words, as lack of symmetry. The study of the equations for the quasiparticle fields
shows indeed that they are not invariant under the SU(2) group. Thus there are two sets of
equations with different invariance properties: on one side, the dynamical equations derived
from the Lagrangian, which remain invariant when the Heisenberg field operators undergo
the SU(2) transformations; on the other side, the equations for the quasiparticle field oper-
ators, in terms of which observables are expressed, which are not invariant under the SU(2)

transformations.
In full generality, I denote by G the transformation group under which the basic La-

grangian is invariant. The general questions concerning which one is the transformation
group G′ under which the equations for quasiparticle or physical fields are invariant, how
the “symmetry rearrangement” G → G′ occurs and which one is its physical meaning are
the ones addressed in this paper.

I will not consider the case of “explicit” breakdown of symmetry. This is the case where
one adds to the Lagrangian, assumed to be invariant under the continuous group G, a “sym-
metry breaking” term. Instead, I will discuss the “spontaneous” breakdown of symmetry.
It occurs when the ground state or vacuum state |0〉 is not invariant under the continuous
group G under which the Lagrangian is invariant. In other words, when at least some of the
generators of G do not annihilate the ground state |0〉. The vacuum which is invariant under
the symmetry group (and thus no breakdown of symmetry occurs) is called the “normal” or
symmetric vacuum.

I observe that, under convenient boundary conditions, in principle every one among the
possible non-symmetric vacua can be realized in Nature. In the ferromagnets, for example,
the magnetization may point in any possible direction and the magnetization strength may
in principle assume any value up to a saturation limit: the system, driven by its dynam-
ics, “spontaneously” sets to the state characterized by a specific magnetization under given
boundary conditions. This is why the breakdown of the symmetry is said to be “sponta-
neous”. As a consequence of this, the original invariance of the Lagrangian under the group
G may manifest itself into many “different” symmetry patterns at the physical level. Since
the magnetization fully characterizes the non-symmetric vacuum of a given representation,
it acts as a label for the inequivalent representations. Each one of these representations de-
scribes a different physical phase of the system. Observables, such as the magnetization,
good for labeling different symmetry patterns (or physical phases) are called order para-
meters. In this way it happens that the same basic dynamics (same Lagrangian with given
invariance group G) may manifest itself into a variety of stable symmetry patterns at the
level of the observables, each corresponding to different boundary conditions or to different
ranges of the values of the theory parameters, and specified by the order parameter value.
Changes occurring in the order parameter describe transitions among the system physical
phases (phase transitions).

Since physical theories need to be tested by observations, the spaces which will be con-
sidered in the following will be the ones where the physical (in- or out-) field operators are
realized. This introduces crucial constraints in the mathematical derivations, which account
for important features in the way the original invariance of the Lagrangian manifests itself
in the observable symmetry patterns.
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I will not consider the rôle of the temperature usually contrasting the emergence of or-
dered patterns, or inducing symmetry restoration. I will also omit to consider questions
related with renormalization problems.

The terminology “breakdown of symmetry” might suggest that the invariance of the La-
grangian under the continuous symmetry group G is in some way lost when symmetry is
broken. However, the invariance of the Lagrangian means that the generators of the group G

commute with the Hamiltonian and this determines the constants of motion. Therefore, for
internal consistency, the invariance cannot simply disappear. On the other hand, the ques-
tion arises of which one is the relation between the symmetry group for the Heisenberg
field equations and the one for the physical field equations. As previously mentioned, the
mapping between the Heisenberg fields and the physical fields is displayed through the dy-
namical map. Due to the nonlinear character of the dynamical map, which reflects nonlinear
dynamical effects, one naturally expects that the symmetry properties at the level of the
Heisenberg field operators may manifest themselves through a mechanism of “dynamical
rearrangement” G → G′ at the level of physical fields. Under quite general conditions, it
turns out that G′ is the group contraction of G.

One reason why the symmetry group G′ may be different from G is based on the fact
that any observation on a system described by fields is a collection of local observations.
Therefore, there always exists the possibility that in each local observation one misses an
infinitesimal contribution of the order of magnitude of 1

V
, with the volume V → ∞. This

missing effect can be accumulated as a finite amount when it is integrated over the whole
system, thus producing the difference G′ �= G: it is responsible of the group contraction
phenomenon. Such a local infinitesimal contribution is called infrared effect [39, 53].

In the following I will proceed by discussing some physically relevant models. How-
ever, the conclusions can be extended in a quite general way to other QFT models. Indeed,
group contraction has been shown to occur in models invariant under SU(n), SO(n), chiral
SU(2) × SU(2), SU(3) × SU(3), etc. (see [18] and [59] and references therein quoted).
One might classify the different cases into three categories Ri , i = 1,2,3 [18].

In the case R1 the dynamical groups are Abelian; the dynamical and phenomenological
symmetry have the same algebraic structure: the rearrangement leads to a trivial contraction
of the basic symmetry algebra; Heisenberg and asymptotic fields provide different realiza-
tions of this algebra. Examples include spontaneous breakdown of phase, chiral phase and
scale invariance [38, 44, 58].

In the case R2 the dynamical rearrangement manifestly leads to a contraction of the basic
symmetry algebra. Examples are given in Refs. [33, 39, 43, 53, 54, 58, 62–64] and include,
e.g., the case of a scalar isotriplet, the ferromagnet discussed below, the chiral SU(2) ×
SU(2) symmetry [33] realized by nonlinear transformation of the pion field, the SU(3)

group in a linear approximation of solid state systems as T − t Jahn–Teller systems [63, 69].
In the case R3 the generators of the phenomenological symmetry do not form a closed

algebra. By enlarging the set of generators one can complete the algebra. In Ref. [44] such
an extreme case of rearrangement is studied for an SU(2) invariant model.

The dynamical rearrangement of continuous spatial translation group into discrete trans-
lation group leading to lattice structure has been also studied with particular reference to
crystal formation [59, 60]. In that case the Nambu–Goldstone bosons are the quanta of the
elastic waves, i.e. the phonons.

The paper is organized as follows: the spontaneous breakdown of the SU(2) and of the
U(1) symmetry will be studied in Sects. 2 and 3, respectively. The dynamical rearrangement
of the symmetry and the infrared effect will be discussed in Sects. 4 and 5, respectively.
Section 6 is devoted to conclusions and further remarks.
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2 Spontaneous Breakdown of SU(2) Symmetry

A physically interesting example is the itinerant electron model of the ferromagnet. The
localized spin model can be studied in a similar way, see [54]. Another interesting SU(2)

example is the one of the isospin vector fields reported in [39]. Let ψ(x) denote the electron
field:

ψ(x) =
(

ψ↑(x)

ψ↓(x)

)
, (1)

with ↑ and ↓ denoting the field spin up or down, respectively. Under SU(2) ψ(x) transforms
as

ψ(x) → ψ
′
(x) = exp(iθiλi)ψ(x), i = 1,2,3, (2)

with λi = σi

2 , σi the Pauli matrices, and θi a triplet of real continuous group parameters.
One does not need to specify the explicit form of the Lagrangian. It is only required to

be invariant under the SU(2) group of rotations (2). Let S(i)(x), i = 1,2,3, be the SU(2)

generators:

[S(i)(x), S(j)(x)] = iεijkS
(k)(x). (3)

The explicit form of the generators S(i)(x) in terms of the anticommuting fields ψ(x) can
be given for example by S

(i)
ψ (x) = ψ†(x)

σi

2 ψ(x). Most of the conclusions will be however
independent of the specific form of S(i)(x). In the case of localized spins, one may introduce
S(i)(xl) and the (total) SU(2) generators

S(i) =
∑

l

S(i)(xl), i = 1,2,3, (4)

[S(i), S(j)] = iεijkS
(k). (5)

The invariance of the Lagrangian under SU(2) implies: L[ψ(x)] = L[ψ ′
(x)]; the ground

state |0〉 is however assumed to be not invariant under the full SU(2) group but only under
the subgroup U(1) of the rotations around the 3rd axis in the spin-space.

The Green’s function generating functional is

W [J, j, n] = 1

N

∫
[dψ][dψ†] exp i

∫
dt{L[ψ(x)] + J (x)ψ(x) + ψ†(x)J (x)

+ j †(x)S
(−)
ψ (x) + S

(+)
ψ (x)j (x) + S

(3)
ψ (x)n(x) − iεS

(3)
ψ (x)}, (6)

where N is the normalization factor

N [J, j, n] =
∫

[dψ][dψ†] exp i

∫
dt{L[ψ(x)] − iεS

(3)
ψ (x)}. (7)

S
(α)
ψ (x), α = ±,3, S

(±)
ψ (x) ≡ S

(1)
ψ (x) ± iS

(2)
ψ (x), is the spin density made of ψ(x). The elec-

tron fields ψ(x), ψ(x)† and their sources J , J † anticommute; the sources j are commuting
c-numbers. The ε-term has been introduced in order to include in the functional integral the
information of the spontaneous breakdown of the symmetry [38, 60] and the limit ε → 0 has
to be taken at the end of the computation. In the functional integral formalism the functional
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average 〈F [ψ]〉 agrees with the ground state expectation value of the T (F [ψ]) where T

denotes the chronological products of the Heisenberg fields ψ(x) and ψ†(x).

〈F [ψ]〉 = 〈0|T (F [ψ])|0〉. (8)

The ground state expectation values of chronological products of ψ(x) and ψ†(x), i.e. the
Green’s functions, are now obtained by repeated functional derivatives of W [J, j, n] with
respect to the relative sources ∂

∂J † and ∂
∂J

followed by the limits of J , j and n going to zero.
The presence of the source terms with j and n allows the study of the behavior of the spin
densities without specifying the dependence of S

(i)
ψ on ψ .

For θi infinitesimal S
(i)
ψ (x) transforms as

S
(i)
ψ (x) → S

(i)′
ψ (x) = S

(i)
ψ (x) − θj εijkS

(k)
ψ (x). (9)

Now, putting J = 0 = n and performing the change of variables (2) in the numerator of (6),
one gets

∂W

∂θl

= 0. (10)

By operating with δ
δj (y)

on this and putting j = 0 one then obtains

(ε1lk + iε2lk)〈S(k)
ψ (y)〉ε = −εε3lk

∫
d4x〈S(k)

ψ (x)S
(+)
ψ (y)〉ε . (11)

Similarly, operating with δ

δj†(y)
and putting j = 0 leads to

(ε1lk − iε2lk)〈S(k)
ψ (y)〉ε = −εε3lk

∫
d4x〈S(k)

ψ (x)S
(−)
ψ (y)〉ε . (12)

These two last equations lead to

ε1lk〈S(k)
ψ (y)〉ε = −εε3lk

∫
d4x〈S(k)

ψ (x)S
(1)
ψ (y)〉ε . (13)

ε2lk〈S(k)
ψ (y)〉ε = −εε3lk

∫
d4x〈S(k)

ψ (x)S
(2)
ψ (y)〉ε . (14)

From these equations, for l = 1 and l = 2, it follows:

ε

∫
d4x〈S(2)

ψ (x)S
(1)
ψ (y)〉ε = 0, (15)

〈S(3)
ψ (y)〉ε = ε

∫
d4x〈S(1)

ψ (x)S
(1)
ψ (y)〉ε, 〈S(3)

ψ (y)〉ε = ε

∫
d4x〈S(2)

ψ (x)S
(2)
ψ (y)〉ε, (16)

and for and l = 3:

〈S(1)
ψ (y)〉ε = 〈S(2)

ψ (y)〉ε = 0. (17)
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Write now

〈S(i)
ψ (x)S

(i)
ψ (y)〉ε = i

∫
d4p

(2π)4
e−ip(x−y)ρ(i)(p)

(
1

p0 − ωp + iεai

− 1

p0 + ωpp − iεai

)

+ c.c., i = 1,2,3. (18)

Here the notation is p(x − y) = −p · (x − y) + ip0(tx − ty) and ωp is the energy of a qua-
siparticle which is a bound state of electrons. It existence is proved by showing that the
spectral density ρi(p) is not zero. The explicit dynamical calculation can be done provided
the specific form of the Lagrangian is assigned (see e.g. [54] and [60]). It is however re-
markable that the general treatment based on symmetry considerations proves the existence
of such a bound state in full generality (i.e. in a model independent way since the Lagrangian
form has not been specified except for its invariance properties). The continuum contribution
(c.c.) in (18) comes from states which contain more than one quasiparticle. The singularities
in the Feynman Green’s functions are defined as usual by ωp − iη with infinitesimal η. In
(18) ai = η

ε
. Note that since S

(i)
ψ are Hermitian ρi(p) cannot be negative.

By operating with [ δ

δj†(z)
][ δ

δj (y)
] and [ δ

δj (z)
][ δ

δj†(y)
] on (10), putting then j = 0 and sub-

tracting leads to

〈S(1)
ψ (x)S

(1)
ψ (y)〉ε = 〈S(2)

ψ (x)S
(2)
ψ (y)〉ε, (19)

which gives ρ1(p) = ρ2(p) and a1 = a2. The magnetization is given by gμB〈S(3)
ψ (x)〉ε with

μB the Bohr magneton. The notation M(ε) = 〈S(3)
ψ (x)〉ε will be used, and

M = lim
ε→0

M(ε) (20)

(16) and (18) say that in order to have a non-zero M , there should be a bound state of gapless
energy ωp = 0 at p = 0 (the Goldstone theorem). Indeed they give

M(ε) = iεΔi(ε,0), i = 1,2, (21)

which can lead to non-vanishing M with ε → 0 only when ωp = 0 at p = 0. One further has

M = 2ρ

a
, i = 1,2. (22)

In (22) ρ = ρ1 = ρ2 and a = a1 = a2 and in (21) it has been used

Δi(ε,p) = ρ(i)(p)

(
1

p0 − ωp + iεai

− 1

p0 + ωp − iεai

)
. (23)

In the case of localized spins, the integration of p is confined to the domain − π
d

< pi <
π
d

, where d is the lattice length and derivation of (21) requires use of the formula

v

(2π)3

∑
l

e−ipxl = δ(3)(p), (24)

with v the volume of unit lattice.
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Now I calculate ρ. The total spin in the third direction is NM , where N is the number of
lattice points. Then the ground state expectation value of S2 is given by

〈0|S2|0〉 = NM(NM + 1). (25)

By assuming tk < tl in (18), with i = 1,2, and performing the limit tk → tl (same result is
obtained by assuming tl < tk), one finds, using (24), that

〈0|SiSi |0〉 = ρN for i = 1,2. (26)

Therefore, 〈0|S2|0〉 = 2ρN +(NM)2 and, comparing with (25), ρ = 1
2M , which gives a = 1

(cf. (22)).
In conclusion, (20) along with non-zero M requires the existence of gapless bosons, i.e.

the magnons, which are the Nambu–Goldstone (NG) bosons of the breakdown of the spin
SU(2) symmetry of the Lagrangian. In practical computations the magnon is a bound state
of electrons and is treated by the Bethe–Salpeter equation [54, 60]. As well known in the
theory of the ferromagnets, the magnons are the long range correlations responsible for
ferromagnetic ordering [27, 45, 60, 68]. They are the spin wave quanta. Thus, ordering is
originated from the spontaneous breaking of the SU(2) symmetry, through the dynamical
generation of the NG gapless bound states (the magnons).

In the proof of the Goldstone theorem presented above the system volume is considered
to be infinite. This is a reasonable working assumption since observations are always local
and therefore the system volume V may be taken to be infinite. This is also the case of the
so called thermodynamic limit where the limit to the infinite number of degrees of freedom
and to the infinite volume is taken is a way that the density remains finite. The spatial in-
tegration domain, e.g. in (18), thus extends to infinity and this is crucial in picking up the
zero-momentum contribution in the two-point Green’s function. As discussed below, the dy-
namical rearrangement of the symmetry occurs since terms of the order of 1

V
are missing in

local observations.
It is, however, interesting to consider the boundaries effects on the dynamics, due to the

finiteness of the system volume. For example, in some cases it is necessary to consider how
the ordering induced by the NG condensation gets distorted in the vicinity of the system
boundaries and how “defects” (non-homogeneous condensation) appear. One can then show
that the NG particle acquires an effective non-zero mass due to finite volume effects [4,
5, 65]. The effective mass of the NG mode reflects on the correlation length and thus it is
directly related to the size of the ordered domain. Such volume effects can be also related
with temperature effects. For sake of shortness, here I do not discuss further these topics,
see [4, 5, 21, 65].

3 The Anderson–Higgs–Kibble Mechanism

I consider now the example of the complex scalar field with U(1) local gauge symmetry. Let
φ(x) denote the Heisenberg complex scalar field interacting with the Heisenberg gauge field
Aμ(x) [7, 28, 34, 40]. The Lagrangian density L[φ(x),φ∗(x),Aμ(x)] is invariant under the
global and the local gauge transformations:

φ(x) → eiθφ(x), Aμ(x) → Aμ(x), (27)

φ(x) → eie0λ(x)φ(x), Aμ(x) → Aμ(x) + ∂μλ(x), (28)
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respectively, where λ(x) → 0 for |x0| → ∞ and/or |x| → ∞. I will use the Lorentz gauge:

∂μAμ(x) = 0, (29)

and put

φ(x) = 1√
2
[ψ(x) + iχ(x)], ρ(x) = ψ(x) − 〈ψ(x)〉ε . (30)

Spontaneous breakdown of symmetry is introduced through the condition

〈0|φ(x)|0〉 ≡ ṽ �= 0, (31)

with ṽ constant. The generating functional, including the gauge constraint through a func-
tional delta-like term, is [40]

W [J,K] = 1

N

∫
[dAμ][dφ][dφ∗][dB] exp i

∫
d4x{L(x) + B(x)∂μAμ(x)

+ K∗φ + Kφ∗ + Jμ(x)Aμ(x) + iε|φ(x) − v|2}, (32)

N =
∫

[dAμ][dφ][dφ∗][dB] exp i

∫
d4x{L(x) + iε|φ(x) − v|2}.

B(x) is an auxiliary field which guarantees the gauge condition. As in the case studied in
the previous section, the Ward–Takahashi identities are obtained. In particular the following
pole structure is obtained for the two-point functions [40]:

〈χ(x)χ(y)〉 = lim
ε→0

{
i

(2π)4

∫
d4pe−ip(x−y) Zχ

p2 + iεaχ

+ (contin contr)

}
, (33)

〈B(x)χ(y)〉 = lim
ε→0

{ −i

(2π)4

∫
d4pe−ip(x−y) e0ṽ

p2 + iεaχ

}
, (34)

〈B(x)Aμ(y)〉 = ∂μ
x

i

(2π)4

∫
d4pe−ip(x−y) 1

p2
, (35)

〈B(x)B(y)〉 = lim
ε→0

−i

(2π)4

∫
d4pe−ip(x−y) (e0ṽ)2

Zχ

[
1

p2 + iεaχ

− 1

p2

]
. (36)

Equation (33) shows, in a way similar to the cases considered in the previous section, that
the field χ is the NG massless mode. Equation (36) shows that the model contains in the
present case also a massless negative norm state (ghost). The absence of cut singularities in
last three of these propagators suggests that B(x) obeys a free field equation. Moreover, it
can be shown that a massive vector field Uμ also exists in the theory and that the NG and the
ghost modes do not appear in the physical particle spectrum (the Anderson–Higgs–Kibble
mechanism) [40]. Using B(x) → B(x) + λ(x) in (32) gives, after functional derivative,

〈∂μAμ(x)〉ε,J,K = 0. (37)

The two-point functions shown above provide the tools necessary to derive the dynamical
maps. The result is the following [40]:

S = :S[ρin,U
μ

in, ∂(χin − bin)]:, (38)
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φ(x) = : exp

{
i
Z

1
2
χ

ṽ
χin(x)

}
[ṽ + Z

1
2
ρ ρin(x) + F [ρin,U

μ

in, ∂(χin − bin)]]:, (39)

Aμ(x) = Z
1
2
3 U

μ

in(x) + Z
1
2
χ

e0ṽ
∂μbin(x) + :Fμ[ρin,U

μ

in, ∂(χin − bin)]:, (40)

where the functionals F and Fμ are to be determined within a particular model. It will be
also used the notation A0μ(x) ≡ Aμ(x) − e0ṽ:∂μbin(x):. In (38–40) χin denotes the NG
mode, bin the ghost mode, U

μ

in the massive vector field and ρin the massive matter field.
Their field equations are

∂2χin(x) = 0, ∂2bin(x) = 0, (∂2 + m2
ρ)ρin(x) = 0, (41)

(∂2 + m2
V )U

μ

in(x) = 0, ∂μU
μ

in(x) = 0. (42)

with m2
V = Z3Z

−1
χ (e0ṽ)2. One also has

B(x) = e0ṽZ
− 1

2
χ [bin(x) − χin(x)]. (43)

The field equations for B and Aμ are

∂2B(x) = 0, −∂2Aμ(x) = jμ(x) − ∂μB(x), (44)

with jμ(x) = δL(x)/δAμ(x). Requiring that the current jμ is the only source of the gauge
field Aμ in any observable process amounts to impose the condition: p〈b|∂μB(x)|a〉p = 0,
i.e. from (44)

(−∂2)p〈b|A0
μ(x)|a〉p =p 〈b|jμ(x)|a〉p, (45)

where |a〉p and |b〉p denote two generic physical states. Equation (45) are the classical
Maxwell equations. The condition p〈b|∂μB(x)|a〉p = 0 leads to the Gupta–Bleuler-like con-
dition

[χ(−)
in (x) − b

(−)
in (x)]|a〉p = 0, (46)

where χ
(−)
in and b

(−)
in are the positive-frequency parts of the corresponding fields. Thus, χin

and bin do not participate to any observable reaction. Note in fact that they are present in
the S matrix in the combination (χin − bin) (cf. (38)). This fact along with the appearance
in theory of the massive vector field Uμ(x) is referred to as the Anderson–Higgs–Kibble
mechanism [7, 8, 23, 28, 34]. I stress that, although the NG particles χin (and the ghost field
bin) do not show up in the particle spectrum, nevertheless their condensation characterizes
the physical state structure (see (46)) and their rôle is crucial in recovering the internal con-
sistency of the invariance properties of the theory. It is also remarkable that the NG boson
condensation leads to the classic Maxwell equations, thus exhibiting macroscopic manifes-
tations of the microscopic dynamics. Moreover, one can also see that, when the vacuum
is not translationally invariant, the NG fields produce observable effects in the formation of
macroscopically behaving extended objects, such as kinks, vortices, etc. [40, 41, 59, 60, 65].
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4 Dynamical Rearrangement Symmetry and Group Contraction

In the present section I want to study how the invariance of theory manifests itself at the
level of the physical (quasiparticle) fields when the G symmetry is spontaneously broken.
The problem to solve is therefore the one of finding the symmetry group G′ under which the
free field equations are invariant. In general G′ turns out to be the group contraction of G.
This means that G′ contains a subgroup of transformations which induce translations of the
NG boson fields and thus it describes the condensation of the NG modes in the ground state.
In this way ordered patterns are generated. These ordered patterns constitute the macro-
scopic manifestation of the symmetry breakdown. The NG modes are long range correlation
modes and leads us to recognize the collective nature of the ordering occurring as a manifes-
tation of the spontaneous breakdown of the symmetry. In this connection, I recall that in the
Andreson–Higgs–Kibble mechanism discussed above the classical Maxwell equations have
already been obtained as macroscopic manifestations of the microscopic dynamics. In this
section it will be discussed the occurrence of macroscopic (classically behaving) quantities
and how the microscopic dynamics manifests into macroscopic quantum systems.

4.1 The SU(2) Ferromagnetic Model

The dynamical map of the Heisenberg electron fields ψ(x) in terms of the quasielectron
field φ(x) and of the magnon field B(x) is:

ψ(x) = Ψ (φ(x),B(x)). (47)

The dynamical rearrangement consists in the change of the continuous symmetry group
G ≡ SU(2) into the transformation group G′, under which the equations for the quasiparti-
cle fields are invariant:

ψ ′(x) = Ψ (g[φ(x)]), g ∈ G′ (48)

where ψ ′(x) is the transformed of ψ(x) under SU(2) according to (2).
The magnon field B(x) is a gapless bound state of the electron field. In the present dis-

cussion I omit considering other fields such as the e.m. field. We want to know which one is
the group G′. The boson field for the magnons is introduced as

B(x) =
∫

d3k

(2π)3/2
Bke

ik·x−iωkt , B†(x) =
∫

d3k

(2π)3/2
B

†
ke−ik·x+iωkt , (49)

with commutation relations

[B(x),B†(y)]tx−ty = δ(x − y), [B(x),B†(y)] = [B(x),B†(y)] = 0. (50)

The fields (49) satisfy the equations

K(
−→
∂ )B†(x) = 0, B(x)K(

←−
∂ ) = 0, (51)

where

K(
−→
∂ ) = −

(
i

−→
∂

∂t
+ ω

)
. (52)

The free field equations for the quasielectron are

Λ(
−→
∂ )φ(x) = 0, φ†(x)Λ(

←−
∂ ) = 0, (53)
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where Λ(
−→
∂ ) denotes the partial derivative operator, including the quasielectron mass term,

which is appropriate for the model specified by the Lagrangian one considers.
In the following it is convenient to work with the Heisenberg spin operator densities

S
(i)
ψ (x), i = 1,2,3, which transform under SU(2) as in (9).

To obtain the expressions of the S-matrix S and of the spin densities S(i)(x) in terms of φ

and of B fields, S(φ,φ†,B,B†) and S(i)(x,φ,φ†,B,B†), the functional formalism together
with the LSZ formula is used. One has [53]

S(φ,φ†,B,B†) = 〈: exp[−iA(φ,φ†,B,B†)]:〉 (54)

and

S(i)(φ,φ†,B,B†) = 〈S(i)
ψ (x): exp[−iA(φ,φ†,B,B†)]:〉 (55)

where i = 1,2,3 and

A(φ,φ†,B,B†) =
∫

d4x[ρ−1/2B(x)K(
−→
∂ )S

(−)
ψ (x) + ρ−1/2S

(+)
ψ (x)K(−←−

∂ )B†(x)

+ Z−1/2φ†(x)Λ(−−→
∂ )ψ(x) + Z−1/2ψ†(x)Λ(−←−

∂ )φ(x)]. (56)

Here Z is the wave function renormalization of the electron and ρ = 1
2M . As usual the

symbol : · · · : denotes normal product ordering and 〈· · ·〉 denotes functional average. Our
task is to find the transformations for φ,φ†,B,B† in (54) and (55) which leave invariant
their field equations and such that the transformation (9) of S(i)(φ,φ†,B,B†) is induced.
I denote the transformed fields by φθ ,φ

†
θ ,Bθ ,B

†
θ and require they satisfy the equations for

the quasiparticles

K(
−→
∂ )B

†
θ (x) = 0, Bθ (x)K(

←−
∂ ) = 0, (57)

Λ(
−→
∂ )φθ (x) = 0, φ

†
θ (x)Λ(

←−
∂ ) = 0, (58)

and that

∂

∂θl

S(φθ ,φ
†
θ ,Bθ ,B

†
θ ) = 0, (59)

∂

∂θl

Si(x,φθ ,φ
†
θ ,Bθ ,B

†
θ ) = −εilkS

k(x,φθ ,φ
†
θ ,Bθ ,B

†
θ ). (60)

I use now the transformed fields in (56) and obtain equations for these fields implied by (59)
and (60) by following the steps which can be found in Ref. [53] The equations eventually
obtained are:

∂

∂θ1
Bθ(x) = i

(
M

2

)1/2

,
∂

∂θ1
B

†
θ (x) = −i

(
M

2

)1/2

,

∂

∂θ1
φθ (x) = 0,

∂

∂θ1
φ

†
θ (x) = 0,

(61)

∂

∂θ2
Bθ(x) = −

(
M

2

)1/2

,
∂

∂θ2
B

†
θ (x) = −

(
M

2

)1/2

,

∂

∂θ2
φθ (x) = 0,

∂

∂θ2
φ

†
θ (x) = 0,

(62)
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∂

∂θ3
Bθ(x) = −iBθ (x),

∂

∂θ3
B

†
θ (x) = iB

†
θ (x),

∂

∂θ3
φθ(x) = iλ3φθ(x),

∂

∂θ2
φ

†
θ (x) = −iφ

†
θ (x)λ3,

(63)

and using the conditions φθ(x) = φ(x),Bθ (x) = B(x), etc., at θ = 0, gives

φ(x) → φθ (x) = φ(x), φ†(x) → φ
†
θ (x) = φ†(x),

B(x) → Bθ(x) = B(x) + iθ1

(
M

2

) 1
2

, (64)

B†(x) → B
†
θ (x) = B†(x) − iθ1

(
M

2

) 1
2

,

for θ2 = θ3 = 0,

φ(x) → φθ (x) = φ(x), φ†(x) → φ
†
θ (x) = φ†(x),

B(x) → Bθ(x) = B(x) − θ2

(
M

2

) 1
2

, (65)

B†(x) → B
†
θ (x) = B†(x) − θ2

(
M

2

) 1
2

,

for θ1 = θ3 = 0, and

φ(x) → φθ (x) = eiθ3λ3φ(x), φ†(x) → φ
†
θ (x) = φ†(x)e−iθ3λ3 ,

B(x) → Bθ(x) = e−iθ3B(x), B†(x) → B
†
θ (x) = eiθ3B†(x),

(66)

for θ1 = θ2 = 0.
The transformations (64–66) belong to the E(2) group which is the Inönü–Wigner group

contraction of SU(2) [18, 31]. Equations (64–66) express the dynamical rearrangement of
symmetry: when the quasiparticle fields φ,φ†,B,B† undergo the E(2) transformations (64–
66), the SU(2) transformations (2) and (9) of the Heisenberg fields ψ,ψ†, Si are induced,
and vice-versa. Note that (66) represents the unbroken rotation around the third axis. The
derivation presented above is fully general and model independent, thus one can state that the
Inönü–Wigner group contraction is the mathematical mechanism determining the rearranged
symmetry group [18].

I remark that the c-number translations of the field B(x) (and B†(x)) in (64) and (65)
must be understood as the limit for f (x) → 1 of the transformations

B(x) → Bθ(x) = lim
f (x)→1

[
B(x) + if (x)θ1

(
M

2

) 1
2
]
, (67)

B(x) → Bθ(x) = lim
f (x)→1

[
B(x) − f (x)θ2

(
M

2

) 1
2
]
, (68)

(and h.c.), respectively. Here the function f (x) is any square-integrable function which sat-
isfies the magnon equation. Without such function, terms like θl(

M
2ρ

)K(∂)S
(−)
ψ (x) would be
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contained in the quantity A(φθ ,φ
†
θ ,Bθ ,B

†
θ ) (cf. (56)), contributing, in S(φθ ,φ

†
θ ,Bθ ,B

†
θ ) and

S(i)(φθ ,φ
†
θ ,Bθ ,B

†
θ ), to Feynman diagrams by energyless and momentumless external lines,

and thus these diagrams can contain a power of zero energy singularities. In order to avoid
such an infrared catastrophe one substitutes θi by f (x)θi , i = 1,2, and, since Bθ(x) must
satisfy the magnon equation, it is necessary that f (x) satisfy the magnon equation. The
limit f (x) → 1 must be taken at the end of the computations. Note that the magnon equa-
tions are invariant under (67) and (68) even before the limit f (x) → 1, thus exhibiting the
E(2) invariance.

The generators of the transformations (64–66) (with θi , i = 1,2, replaced by f (x)θi ) are

s
(1)
f =

(
M

2

)1/2 ∫
d3x[B(x)f (x) + B†(x)f ∗(x)], (69)

s
(2)
f = −i

(
M

2

)1/2 ∫
d3x[B(x)f (x) − B†(x)f ∗(x)], (70)

s
(3)
f =

∫
d3x[φ†(x)λ3φ(x) − B†(x)B(x)]. (71)

The introduction of the square-integrable function f (x) is essential in order for the genera-
tors (69–71) to be well defined. Moreover, these generators are time independent since f (x)

satisfies the magnon equation. The generators (69–71) have commutation relations:

[s(1)
f , s

(2)
f ] = iM

∫
d3x|f (x)|2 = (const)I, (72)

[s(3)
f , s

(1)
f ] = is

(2)
f , [s(3)

f , s
(2)
f ] = −is

(1)
f , (73)

which, in terms of s
(±)
f = s

(1)
f ± is

(2)
f , read as

[s(+)
f , s

(−)
f ] = 2M

∫
d3x|f (x)|2 = (const)I, (74)

[s(3)
f , s

(±)
f ] = ±s

(±)
f . (75)

The algebra is thus the (projective) E(2) algebra and thus the generators s
(i)
f , i = 1,2, (or

s
(±)
f ) exhibit their boson character (compare the above algebra (74), (75) with the Weyl–

Heisenberg algebra) when expressed in terms of the quasiparticle fields φ and B(x).

4.2 The Local U(1) Gauge Model

Inspection of the dynamical maps (38–40) and of the field equations (41–44) shows that the
local gauge transformations (28) of the Heisenberg fields and the transformation B(x) →
B(x) are induced by the in-field transformations

χin(x) → χin(x) + e0ṽZ
− 1

2
χ λ(x), bin(x) → bin(x) + e0ṽZ

− 1
2

χ λ(x), (76)

ρin(x) → ρin(x), U
μ

in(x) → U
μ

in(x). (77)

The global transformation φ(x) → eiθφ(x) is induced by

χin(x) → χin(x) + θṽZ
− 1

2
χ f (x), (78)
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bin(x) → bin(x), ρin(x) → ρin(x), U
μ

in(x) → U
μ

in(x), (79)

with ∂2f (x) = 0 and the limit f (x) → 1 to be performed at the end of the computation.
Note that under the above in-field transformations the in-field equations and the S matrix are
invariant and that B is changed by an irrelevant c-number (in the limit f → 1 ). Therefore
the physical content of the theory does not change. However, under the transformations (76),
Equations (29) and (31) change into

〈0|∂μAμ(x)|0〉 = ∂2λ(x), (80)

〈0|φ(x)|0〉 = eie0λ(x)ṽ, (81)

respectively. Therefore the condition (31) is not sufficient to determine the physical content
of the theory: besides 〈0|φ(x)|0〉, the gauge should also be specified.

In the following it will be seen that when the function f (x) in the boson transformation
(78) is a regular (i.e. Fourier transformable) function, its only effect is the appearance of
a phase factor in the order parameter: ṽ(x) = eicf (x)ṽ, with c a constant, and thus it can
be eliminated by a convenient gauge transformation (gauged away). The conclusion is that
when a gauge field is present, the boson transformation with regular f (x) is equivalent to a
gauge transformation.

The boson transformation (78) must be compatible with the Heisenberg field equations
but also with the physical state condition (46): [χ(−)

in (x)−b
(−)
in (x)]|a〉p = 0. Under the boson

transformation (78), B changes as (cf. (43))

B(x) → B(x) − e0ṽ
2

Zχ

f (x), (82)

where ∂2f (x) = 0. Equation (45) is thus violated when the physical state condition is im-
posed. In order to restore it, the shift in B must be compensated by means of the transfor-
mation of Uin:

U
μ

in(x) → U
μ

in(x) + Z3
− 1

2 aμ(x), ∂μaμ(x) = 0, (83)

where aμ(x) is a convenient c-number function. The dynamical maps of the various Heisen-
berg operators are not affected by (83) since they contain U

μ

in and B(x) in a combination
such that the changes of B and of U

μ

in compensate each other provided

(∂2 + m2
V )aμ(x) = m2

V

e0
∂μf (x). (84)

Equation (84) thus obtained is the Maxwell equation for the massive potential vector aμ

[40, 41]. The classical ground state current jμ,cl turns out to be

jμ,cl(x) ≡ 〈0|jμ(x)|0〉 = m2
V

[
aμ(x) − 1

e0
∂μf (x)

]
. (85)

The term m2
V aμ(x) is the Meissner current, while

m2
V

e0
∂μf (x) is the boson current.

The macroscopic field and current are thus given in terms of the boson transformation
function.

I remark that the classical current is related with ∂μf , i.e. with variations in the boson
transformation function.
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Extension of the formalism to other gauges, such as the radiation gauge, can be found in
[40].

I observe that one might also consider the possibility of non-homogeneous boson con-
densation. This is generated by translating certain asymptotic boson fields, say χ(x), (such
as, but not necessarily, the NG asymptotic fields) by a space-time dependent function f (x):
χ(x) → χ(x)+ f (x), where the space-time dependent functions f (x) is solely constrained
to be a solution of the field equation satisfied by the field χ(x). Such a transformation is
called the boson transformation. As a result of the non-homogeneous boson condensation
thus induced, a space and/or time dependent vacuum is obtained. The boson transformation
theorem then holds, which states that when the boson transformation is performed on the
field χ(x) in the dynamical map of the Heisenberg fields, these resulting Heisenberg fields
satisfy the same field equations they had to satisfy before the boson transformation was
performed [60]. In other words, the same dynamics (the same Heisenberg field equations)
may describe homogeneous and non-homogeneous ground states. In particular, the function
f (x) may be a regular (i.e. Fourier integrable) function, or a singular function (with diver-
gence or topological singularities). For example, f (x) may be not single-valued and thus
path-dependent:

G†
μν(x) ≡ [∂μ, ∂ν]f (x) �= 0, for certain μ,ν, x. (86)

On the other hand, ∂μf , which is related with observables since these may be influenced
by gradients in the Bose condensate, is single-valued, i.e. [∂ρ, ∂ν]∂μf (x) = 0. The boson
condensation induced by such a path-dependent f (x) may give rise to the formation of
topologically non-trivial extended objects, such as vortices, monopoles, etc. It can be shown
that boson condensation induced by singular functions f (x), satisfying (86), may occur
only in the case the field χ(x) is a massless field, as it happens in the case of NG bosons in
spontaneously broken symmetry theories. In this way one can see why are extended objects
with topological singularity observed only in systems showing ordered patterns [6, 59].
Moreover, only in the case of singular function f (x), the boson transformation describes
a transition to a unitarily inequivalent representation, and therefore to a physically distinct
phase of the system (phase transition) [6, 65].

By considering the local U(1) example, one sees that all the macroscopic ground state
effects do not occur for regular f (x) (G†

μν = 0). In fact, from (84) one obtains aμ(x) =
1
e0

∂μf (x) for regular f which implies zero classical current (jμ = 0) and zero classical
field (Fμν = ∂μaν − ∂νaμ), since the Meissner and the boson current cancel each other. The
conclusion is that the vacuum current appears only when f (x) has topological singularities
and these can be created only by condensation of massless bosons, i.e. when spontaneous
breakdown of symmetry occurs. This explains why topological defects appear in the process
of phase transitions, where NG modes are present and gradients in their condensate densities
are nonzero [6, 65].

On the other hand, the appearance of space-time order parameter is no guarantee that
persistent ground state currents (and fields) will exist: if f is a regular function, the space-
time dependence of ṽ can be gauged away by an appropriate gauge transformation.

Since the boson transformation with regular f does not affect observable quantities, the
S-matrix (38), actually given by S =: S[ρin,U

μ

in − 1
mV

∂(χin − bin)] :, is in fact independent
of the boson transformation with regular f :

S → S ′ = :S
[
ρin,U

μ

in − 1

mV

∂(χin − bin) + Z
− 1

2
3 (aμ − 1

e0
∂μf )

]
: (87)
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since aμ(x) = 1
e0

∂μf (x) for regular f . However, S ′ �= S for singular f . Moreover, (87)

shows that S ′ includes the interaction of the quanta U
μ

in and φin with the classical field and
current depending on f (x) and associated to the defects. Thus quantum fluctuations are
shown to interact and have effects on classically behaving macroscopic defects.

5 Group Contraction and the Infrared Effect

The equation for the field χin is invariant under the translation of the field by a constant
quantity if and only if χin is a massless field, ∂2χin(x, θ) = 0. Thus the rearrangement into
the contraction of global U(1) group has the same content as the Goldstone theorem [18].
Since the number operator of χin field changes under the translation, one says that coherent
condensation of the boson χin occurs. The translation of the operator field by a constant is
also recognized to generate coherent states.

In the following I discuss the origin of the change of the group in the process of the
rearrangement of symmetry with reference to the example of the ferromagnet considered
above. The conclusions are, however, general; they hold for any spontaneously broken con-
tinuous compact symmetry group of the Lagrangian. Infrared contributions to the commu-
tations relations among the generators of the symmetry group are missed in the process of
going from the Heisenberg fields to the asymptotic fields and this results in the rearrange-
ment of the symmetry.

I decompose the magnon field into the sum of an “hard” part Bt(x) and a “soft” or
infrared part Bη(x) with η infinitesimal

B(x) = Bt(x) + Bη(x), (88)

where Bt(x) contains only momenta larger than η, while momenta in Bη(x) are smaller than
η. One possible representation of Bη(x) is

Bη(x) = 1

2
η

∫ +∞

−∞
dte−η|t |B(x) = 1

2(2π)1/2
η

∫
d3kδη(k)Bke

ik·x. (89)

The function δη(k) approaches to δ(k) in the limit η → 0. Therefore Bη(x) is of order of η

and independent of x in the limit η → 0.
Now the field B(x) written as in (88) is used in the expression (55) and thus the con-

tribution of Bη(x) to S(i)(φ,φ†,B,B†) can be obtained. By a straightforward computation
whose details are given in [53], one then gets:

S(1)(y) = s
(1)
t (y) +

(
1

2M

)1/2

(Bη + B†
η)s

(3)
t (y), (90)

S(2)(y) = s
(2)
t (y) − i

(
1

2M

)1/2

(Bη − B†
η)s

(3)
t (y), (91)

S(3)(y) = s
(3)
t (y) +

(
1

2M

)1/2

[i(Bη − B†
η)s

(2)
t (y) − (Bη + B†

η)s
(1)
t (y)]. (92)

These are the spin density operators expressed in terms of the quasiparticle fields and when
the infrared contributions from the operators Bη and B†

η are ignored, s
(i)
t is obtained. Note

that the matrix elements of S(i)(y) are equal to those of s
(i)
t :

〈i|S(i)(y)|j〉 = 〈i|s(i)
t (y)|j〉, (93)
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which shows that taking the matrix elements between physical states, i.e. smeared out (local-
ized) states, causes the missing of the infrared contributions. In other words, the limit η → 0
is automatically implied in the computation of the matrix elements between physical states
due to the fact that physical states carry in their definition smearing out functions which act
as a cutoff at infinite volume, namely, as cutoff for infrared momenta. For i = 3 (93) gives

〈i|S(3)(y)|j〉 = 〈i|s(3)
t (y)|j〉 = M, (94)

and therefore s
(3)
t (y) = M + :s(3)

t (y):. Thus the space integration of s
(i)
t (y) must give the

generators (69–71) with B and B† substituted by Bt and B
†
t , respectively, since the cut-

off f (x) excludes contributions at infinite volume (the infrared contributions). By simple
manipulations one obtains:

S
(1)
f = s

(1)
f +

(
1

2M

)1/2

(Bη + B†
η):s(3)

t :, (95)

S
(2)
f = s

(2)
f − i

(
1

2M

)1/2

(Bη − B†
η):s(3)

t :, (96)

S
(3)
f = s

(3)
t +

(
1

2M

)1/2

[i(Bη − B†
η)s

(2)
t − (Bη + B†

η)s
(1)
t ]. (97)

I now observe that the spin operators S
(i)
f satisfy the algebra for the SU(2) group when the

limit f → 1 is taken: [S(i), S(j)] = iεijkS
(k). It is

[s(1)
f ,B†

η(x)] =
(

M

2

)1/2

fη(x), (98)

and similar commutators for s
(i)
f with i = 2,3. Here f (x) = ft (x) + fη(x) has been used,

with same meaning for the notation as in (88). fη(x) contains only momenta smaller than η

and thus it has a spatial domain of range 1
η

and vanishes as η → 0 since f (x) is square-
integrable. To take into account the locally infinitesimal effect, the space integration must
extend to infinity. Therefore, the limit f → 1 must be performed before the limit η → 0 is
taken in order to recognize the differences between S

(i)
f and s

(i)
f . One finds

[S(1)
f , S

(2)
f ] = iM

∫
d3x|f (x)|2 + i

(
1

2

)
[f ∗

η (x) + fη(x) + f ∗
η̄ (x) + fη̄(x)]:s(3)

t :

−
(

1

2M

)1/2

[i(Bη̄ − B
†
η̄ )s

(2)
t − i(Bη + B†

η)s
(1)
t ]. (99)

Here there are two infrared cutoffs η and η̄, and, respectively, two limits to be performed
successively (no matter in which order) since two generators (i.e. two successive rotations)
are involved in the commutator. Suppose η̄ � η, since |fη̄(x)|2 � |fη(x)|2 one can ignore
fη̄ and fη̄∗ in the r.h.s. of (99). The f → 1 limit then gives

[S(1), S(2)] = iS(3). (100)

Moreover,

[S(3), S(1)] = iS(2), [S(3), S(2)] = −iS(1). (101)
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Therefore,

lim
η→0

lim
η̄→0

lim
f →1

[S(i)
f , S

(j)

f ] = iεijkS
(k), (102)

while, by using η̃ ≡ (minimum of η and η̄),

lim
f →1

lim
η̃→0

[S(1)
f , S

(2)
f ] = iM lim

f →1

∫
d3x|f (x)|2 = (const)I, (103)

lim
f →1

lim
η̃→0

[S(3)
f , S

(1)
f ] = lim

f →1
lim
η̃→0

iS(2), (104)

lim
f →1

lim
η̃→0

[S(3)
f , S

(2)
f ] = i lim

f →1
lim
η̃→0

iS(1). (105)

Thus, if the limit f → 1 is performed before the limits η → 0 and η̄ → 0, then the SU(2)

rotational symmetry group is obtained, while the (projective) E(2) group, the group contrac-
tion of SU(2), is obtained by inverting the ordering in which the limits are performed: limit
f → 1 and limit η̄ → 0 are not commutable. The infrared term, although locally infinitesi-
mal, gives, however, a finite global contribution to the commutators of the generators S(i) of
the rotation group for the Heisenberg field. Its locally infinitesimal nature makes it, instead,
commutable with any local operator and thus it does not contribute to the commutators of
the generators for the quasiparticle fields, which are directly related to (local) observations.
Therefore, the group contraction algebra is the one which is related to observable results of
experiments, since the quasiparticle fields are related to observable energy levels: quasipar-
ticles form an irreducible representation of the contraction group.

As said above, the translation of the NG modes by a constant quantity implied by the
group contraction transformations are invariant transformations for the quasiparticle field
equations. Therefore, also the scattering S-matrix has to be invariant under such transfor-
mations. This implies that the NG modes B(x) always appear with their derivatives in the
S-matrix, i.e. in the form ∂μB(x), and thus the NG mode interaction disappears in zero-
momentum limit. In this way the so-called low-energy theorems [2, 3, 22, 70], such as the
Dyson low-energy theorem for magnons in ferromagnets, the Adler theorem in high-energy
physics, the soft boson limit of current algebra theory, according to which low momentum
NG modes do not affect the S-matrix, are recognized to be observable manifestations of the
group contraction mechanism.

Other remarkable consequences of the dynamical rearrangement of symmetry into the
group contraction process are some of the relations in the current algebra formalism, such as
the partially conserved axial vector currents (PCAC) and the Goldberger–Treiman relations
[25, 26, 37, 60].

Summarizing, one reason why the observable symmetry group can be different from the
original symmetry group is based on the fact that macroscopic observations are always a
collection of local observations and therefore there always exists a possibility that in each
local observation one misses an infinitesimal effect of the order of magnitude of 1

V
, with the

volume V going to infinity. This missing effect can be accumulated as a finite amount when
integrated over the whole system. Such a locally infinitesimal effect is called the infrared
effect and is responsible of the origin of the difference between the algebra of the generators
written in terms of the Heisenberg fields and the one of the generators written in terms of
the quasiparticle or physical fields, which carry, indeed, square integrable functions (with
finite spatial support). The group contraction parameter can be thus taken to be 1

V
with the

volume V → ∞.
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I stress that the result obtained above is an exact result, obtained without any approxima-
tion in a model independent derivation, and therefore it must not be confused with the linear
approximations used sometimes in the literature, as for example when using the Holstein–
Primakoff representation [30] of the SU(2) group.

I also remark that in low dimensions (one or two space dimensions), the effects of the
infrared NG bosons may cause the order parameter to vanish under specified conditions of
temperature and dimensionality [42]. It is indeed known that there is a critical dimension Dc

such that for any short-range Hamiltonian at T �= 0, no spontaneous symmetry breakdown
is possible. The dimension is Dc = 1 for discrete symmetries, while Dc = 2 (one space +
one time dimension) for continuous symmetries. The absence of ferromagnetism in one-
and two-dimensional isotropic Heisenberg model was originally observed by Mermin and
Wagner [47]. Hohenberg [29] and Mermin [46] generalized this result into a statement about
the non-existence of a long-range order in one- and two-dimensional systems with continu-
ous symmetry. Analogous conclusion was reached by Coleman [16] in the framework of the
quantum field theory for (1 + 1)-space-time dimensional systems in the absence of gauge
fields. Infrared NG bosons are also known to destroy one-dimensional superconductivity
[35].

6 Conclusions and Further Remarks

Besides the SU(2) symmetry group and the U(1) local gauge group considered above, other
examples have been considered in the literature and, as mentioned in the Introduction, in all
the cases where a (maximal) subgroup is preserved in the process of symmetry breakdown
(the so-called stability group or little group of the ground state) it has been found that the
group which is relevant to the observations is the group contraction of the original invariance
group of the Lagrangian.

The contraction mechanism offers a powerful tool to compute the number of gapless
modes occurring in the theory once the symmetry has been spontaneously broken. For ex-
ample, the number of the degrees of freedom of the instanton solutions in a non-Abelian
gauge theory has been computed by resorting to the mechanism of group contraction [20,
56]. Actually, spontaneous breakdown of symmetry implies that the NG fields must form an
irreducible representation of the invariance group of the theory [15, 18, 24, 36, 40, 57]. The
number of gapless modes is given by the number of the generators closing the Abelian sub-
algebra of the contracted group. These generators are linear in the fields of the NG modes
and thus induce the translations of these NG bosons by constant quantities. In this way
they generate boson condensation of these fields in the ground state. This is related to the
appearance of macroscopic currents in the ground state which are controlled by classical
equations. The mechanism of group contraction thus plays an important rôle in the passage
to the macroscopic phenomena: the basic symmetry is rearranged to a contraction at ob-
servable level; in this way Abelian (boson) transformations are introduced, which regulate
classical macroscopic phenomena through boson condensation. When a large number of
bosons is condensed, observable symmetry patterns appear in ordered states, the quantum
fluctuations become very small ( �n

n
� 1) and the system behaves as a classical one. In this

sense, we have macroscopic quantum systems. These are quantum systems not in the trivial
sense that they are made, as any other physical system, by quantum components, but in the
sense that their macroscopic features, such as ordering and stability, cannot be explained
without recurse to the undergoing quantum dynamics. Similarly, the order parameter, which
characterizes the macroscopic states of such systems, is a classical field in the sense that its
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measurable value (far from the critical region of phase transition) is not affected by quantum
fluctuations �n in the condensate. These results thus seem to support the conjecture [18, 51,
52, 71] that the passage from quantum to classical physics involves some group contraction
phenomena.

The occurrence of group contraction in spontaneously broken symmetry theories has
been also proved by means of projective geometry arguments [19] and the contraction of
group representations has been proved in [13]. The contraction of group representation has
been also shown [14] to provide the nonlinear realizations [12, 17, 50] of the SU(2) doublet
and the SO(n) vector gauge theory models. As well known, nonlinear realizations provide
a powerful tool of investigation in phenomenological theories where effective Lagrangians
are used and spontaneous breakdown of symmetry occurs. By singling out the NG modes
they make explicit the low-energy behavior of the theory and, by allowing the classification
[1, 48, 49] of the allowed symmetry broken patterns, they have been used in the determi-
nation of the extrema of the most general renormalizable Higgs potentials in elementary
particle physics [11].

Finally, I just mention that group contraction also plays a relevant rôle in dissipative sys-
tems and their QFT formalism [6, 9, 55] and in the dissipative quantum model of brain [66].
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